
 Page 1

Final report

Contract No. F61775-00-WE044

12th December 2001

Authors:

Prof. P. Nixon

Contact details:
Department of Computer and Information Sciences

The University of Strathclyde
Glasgow G1 1XH

Scotland
Email: Paddy.Nixon@cis.strath.ac.uk

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14-03-2002
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

29 September 2000 - 29-Sep-01

5a. CONTRACT NUMBER
F61775-00-WE044

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

An Investigation into Component Reconfigurability
Management for Dependable Ad-Hoc Networking

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor Paddy Nixon

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Strathclyde
Livingstone Tower
26 Richmond Street
Glasgow G1 1XQ
United Kingdom

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

SPC 00-4044

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking University of Strathclyde to investigate requirements for robust
reliable application communications in ad-hoc distributed mobile computer networks. Specifically, the contractor
will investigate code mobility in ad-hoc collaborations and apply his insights into dynamic fault tolerant binding to
the management of reliability. To implement and evaluate these issues, a heterogeneous, mobile,
reconfigurable computer network will be assembled. This network will provide the required computational and
physical mobility and will consist of hand-held computers and more powerful development laptop computers
supported by a wireless Ethernet system (based on Lucent’s WaveLan technology). Details of the deliverable
are described below.

15. SUBJECT TERMS
EOARD, Distributed Computing, Fault Tolerant Computing, FPGA

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher Reuter, Ph. D.

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

22 19b. TELEPHONE NUMBER (Include area code)
+44 (0)20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

 Page 2

(1) In accordance with Defense Federal Acquisition Regulation 252.227-7036,
Declaration of Technical Data Conformity (Jan 1997), All technical data delivered
under this contract shall be accompanied by the following written declaration:

"The Contractor, University of Strathclyde, hereby declares that, to the best of its
knowledge and belief, the technical data delivered herewith under Contract No.
F61775-00-WE044 is complete, accurate, and complies with all requirements of the
contract."

DATE: _______________________

Name and Title of Authorized Official:

(End of Clause)

(2) In accordance with the requirements in Federal Acquisition Regulation 52.227-13,
Patent Rights-Acquisition by the U.S. Government (Jun 1989), CONTRACTOR
WILL INCLUDE IN THE FINAL REPORT ONE OF THE FOLLOWING
STATEMENTS:

(A) "Disclosures of all subject inventions as defined in FAR 52.227-13 have been
reported in accordance with this clause."

 Or,

(B) "I certify that there were no subject inventions to declare as defined in FAR
52.227-13, during the performance of this contract."

DATE: ________________________

Name and Title of Authorized Official: ____________________________________

 Page 3

In this report we detail the key architectural aspects for supporting ad hoc mobile
software systems. We describe a computational model of context necessary for
building adaptable systems, developed jointly between ourselves and some colleagues
in the GLOSS project [http://www.gloss.cs.strath.ac.uk]. We then describe the
implementation of a mobile version of this model that supports ad hoc interactions.

1. Introduction

In Anind Dey’s definition, context is related to interaction between user and the
application. Researchers take a user-centered approach in human computer interaction
research. Task plays an important role in human computer interaction. From the
interaction perspective, Joëlle Coutaz and Gaetan Rey at Université Joseph Fourier
France have proposed a semi formal definition of context [Dey2001]. In their
definition, user and task are first class entities and states are capitalized over time.

Given a set of users, U, a task, T, and two instants of observation, t0 and t, where t0
is the temporal reference for observations, the Context at t that relates to U for
performing T, is the composition of the Situations observed between t0 and t that
relate to U for performing T.

context U,T (t) = COMPOSITION (situation U,T (t0), … , situation U,T (t))
where situation U,T (t) is the Situation at t that relates to U for performing T.

The Situation, situation U,T (t), is the set of the values observed at t of the peripheral
state variables that relate to U for performing T, as well as their relations.

Peripheral state variables denote the entities that are not central to U at t for
performing T, but that may have an impact on T, now (i.e., at t) and/or in the
future(i.e., at t+dt).

1.1 Computational Model of Context

From this semi formal definition, we introduce a computational model of context. The
basic unit is contextor. A contextor models the relations between the peripheral
variables of an observed context. For example Essentially a contextor gets input data,
processes it then output some data. From this point of view, this is the same as widget
in Context Toolkit. The difference is that they add something to deal with inaccurate
sensors and faulty sensors. In their model, they add meta-data in to describe the
quality of input data and add meta-data out to describe the quality of output data. For
inaccurate sensor data, some researchers already included quality attributes in the
sensor data in their projects. Daniel Salber has introduced similar ideas in a model but
used a separate channel for sending meta-data rather than send data and meta-data
together. The control in and control out are used to switch off faulty contextors.
Other contextor can send control command to the control in channel of a contextor to
switch it off. A contextor can send control command through its control out channel
to switch off other contextors.

 Page 4

Figure 1. A graphical representation of a contextor

We also propose two methods to compose contextors to get other contexts:
encapsulation and data channels connection. If data out channel of one context is of
the same type of the data in channel of another contextor, then they can be connect
together to get more advanced function. Encapsulation is also used to group
contextors, but the purpose of grouping is to create a new contextor. From outside, the
new contextor looks like a standard contextor, but hides the details of internal
composition.

They divided contextors into six categories: elementary, history, threshold,
translation, fusion and abstraction.

An elementary contextor encapsulates physical sensors and has no data in channel.

Figure 2. The elementary contextor

A history contextor saves the data and meta-in data that it receives from the input
channel. It implements context data storage function.

R1
Data in

Meta Data in

Control in

Control out

Data out

 Meta Data out

Control in

Control out

Data out X

 Meta Data out

sensor

 Page 5

Figure 3. History contextor

A threshold contextor returns true if the data-in value satisfies a threshold condition,
false otherwise.

Figure 4. The Threshold contextor

Data in X

Meta Data in

Control in

Control out

Data Out{X}

 Meta Data out

Buffer

Data in X

Meta Data in

Control in

Control out

Data out Boolean

 Meta Data out

Test

 Page 6

A translation contextor performs type recasting but does not change the meaning,
nor the level of abstraction of the values received on the data-in channel.

Figure 5. The Translation contextor

A fusion contextor has multiple data-in of the same type, each one with its own
meta-data. The role of the fusion contextor is to produce a single data-out of the same
type whose quality has been improved over that of the input data.

Figure 6. The fusion contextor

Data in X

Meta Data in

Control in

Control out

Data out Y

 Meta Data out

Translation

Data in X,X

Meta Data in

Control in

Control out

Data out X

 Meta Data out

Fusion

 Page 7

An abstraction contextor has multiple data-in. The role of the abstraction contextor
is to produce a single data-out whose type is at a higher level of abstraction than that
of the input data types.

Figure 7. The abstraction contextor

2 Implementation of Mobile Contextor

A context-aware application usually makes use of some other software components
that process context. Usually the binding to software components is hard coded into
the application. Or when starting, the application consults some directory server to
find concrete software component. After that the binding is fixed. This static
assumption may not be true, however. During the lifetime of an application, the
software component may fail or be enhanced with more functionality. Or the user may
want the application to still function as usual when the user moves to a new place.
And in previous chapter, we see a general semi formal model for context and the
corresponding computational model. It seems a promising general model of context.
In this chapter, we describe our initial efforts to implement mobile contextor to make
context-aware applications function after moving. First we analyse the problems to be
solved when applications move to new places.

2.1 Analysis

After the application moves, the application must void the bindings to the original
contextors, locate new contextors and re-establish bindings to new contextors, or
moves some of the contextors to the new place. The mechanism to deal with mobility
problems of contextors is very similar to data space management in code mobility
[FuggettaPicco1998]. It depends on whether contextor can be moved, how contextor
is bound and applications requirements.

According to whether contextor can be transferred or not, they can be divided into
two kinds: transferable or not transferable. For example, a elementary contextor to

Data in X,Y

Meta Data in

Control in

Control out

Data out Z

 Meta Data out

Abstr
action

 Page 8

detect temperature is not transferable. A translation contextor that translate
temperature in Celsius into temperature in Farenheit is transferable. Among
transferable contextor, contextor can be marked fixed or free. The difference is that it
is unreasonable to move fixed transferable contextor although it can be transferred.
For example, a softwarte contextor that makes use of a huge file is marked fixed. So
totally there are three types of contextor: free transferrable, fixed transferrable, fixed
not transferable.

Contextors are small software components. Context-aware applications may bind to
some contextors. Some contextors may further bind to other contextors. These
bindings can be divided into three categories: by identifier, by value and by type.
Contextor bound by identifier means that the contextor is uniquely identified and
cannot replaced by other contextors. Contextor bound by value means that the type
and the content of the data out channel of the contextor remains the same after
migration. Contextor bound by type means that the type of the data out channel of the
contextor remains the same after migration.

When an application moves, the bindings or references to contextors at the application
must be modified accordingly in order to for the application to work at the
destination. Mechanisms dealing with modification of reference to contextors can be
divided into the following categories:
1. by move : The contextor moves with the application and the reference does not
change.
2. by copy : The duplicate of the contextor moves with the application. The original
contextor stays at the source. The application changes the reference to use the
duplicate of the contextor.
3. by network reference: The contextor does not move with the application. The
application still uses the contextor at the source and the reference is modified to
become a network reference to the original contextor.
4. by rebind: The contextor does not move. The application finds a new contextor of
the same type at the destination and modifies the reference to use the new contextor.

Alfonso Fuggetta et al. list the possible mechanisms to deal with data space
management problems in code mobility in the following table [FuggettaPicco1998].

 Page 9

BINDINGS, RESOURCES, AND DATA SPACE MANAGEMENT MECHANISMS

 Free

Transferrable
Fixed
Transferrable

Fixed Not
Transferrable

By Identifier By move
(Network
reference)

Network reference Network reference

By Value By copy
(By move, Network
reference)

By copy
(Network
reference)

(Network
reference)

By Type Re-binding
(Network
reference, By copy,
By move)

Re-binding
(Network
reference, By copy)

Re-binding
(Network
reference)

Table 1

 2.2 Implementation

Above we see the basic mechanisms to deal with rebinding problems, however, how
can we make use of these mechanisms in the implementation? When we move some
contextors with the application, these contextors may rely on other contextors. So we
may have to move still some other contextors and/or change the bindings to these
contextors. The FarGo project at Israel Institute of Technology [HolderBen-
Shaul1999a] [HolderBen-Shaul1999b] provides dynamic component relocation while
the application is running. It implemented the above basic mechanisms. FarGo is
Java-based programming environment for the development of mobile-component-
based distributed applications. In FarGo an applications consists of complets. A
complet closure is a collection of local objects. All references among these objects are
local references. Complets are interconnected via intercomplet references. There are
five types of complet references to other complets: Link, Pull, Duplicate, Stamp and
Bi-directional Pull. Each reference type has different requirement on the relocation
activity of the target complet after the source complet moves. With respect to
relocation, Link means that there is no special relation between the source and the
target complets. Pull means that when the source complet moves, it pulls the target
complet with it. Duplicate means that when the source complet moves, a copy of the
target complet is brought with the source complet. Stamp means that the source
complet find a local instance of the target complet at the destination. Bidirectional
Pull means that when the source complet moves, it pulls the target complet with it and
vice versa.

With respect to mobile contextors, we can add an attribute about reference type in a
reference object of an application. When an object moves to the destination, the
receiving portal modifies the reference and gets resources according to the reference
type. We propose providing two methods in the agent: beforemove and afterarrive. In

 Page 10

beforemove method, the application saves the binding relation between the
application and the contextors and sends itself and contextors to the remote site. After

In the implementation of mobile contextor, we use Migrants from Trinity College
Dublin as mobile agent implementation. A mobile agent application usually consists
of two parts: the portal and the mobile agent. The portal runs on each machine all the
time and is responsible for sending and receiving mobile agents. The application was
a ping application to check whether a list of machine is alive or not. There are two
contextors. The data output of the first contextor is a list of machine. The second
contextor connects to the first contextor and uses “ping” command to check whether
these machines are on or not. The application was implemented as an agent. There are
two implementations of mobile contextors. In one implementation, the application
makes use of the original contextor by network reference. In the second
implementation, the application moves all the contextors with it and restarts all the
contextors at the destination.

2.3 Conclusion

The implementation shows that it is possible to move the application with
corresponding contextors to a new place and still runs there. However, it does not
consider reuse. In an instrumented environment, the environment can provide some
facility to process context. And the applications in that environment can shared these
facilities provide by the environment.

3 Conclusion, discussion and opening issues

Up to date, most of context-aware research is limited to isolated indoor environment.
Typical examples include meeting rooms, design room, office buildings and museum
rooms. Many scenarios have been identified and act as test bed for context-aware
research. Researchers also proposed various supporting infrastructures that focus on
these environments. But when the user move between different separated spaces,
there is no software support for bridging this. Little research has been done in
outdoors environment. Tourist guide is an exception. However, tourist guides usually
only considers location. They rarely make use of other context. But there are many
other outdoor human activities that can be supported by context-aware research.
Correspondingly there are very few context-aware infrastructures for outdoor
environment. In order to provide coherent interactions and responses in an ad hoc
outdoor, and by definition mobile, world we need to use context to support the
decision process.

In some projects for example the TEA project, the software support for context-aware
applications was provided solely by software on the computing device. In other
projects, the infrastructure in environment provides the software support. These are
the two extremes. It seems that none of the above software support make use of the
mobile device and the infrastructure at the same time.

 Page 11

REFERENCES

[Brown1996] Brown, Peter J. (1996b). The Stick-e Document: A framework for
creating context-aware applications. In the Proceedings of the Electronic Publishing
’96, pp. 259-272, Laxenburg, Austria, IFIP. September 1996.

[BrownJohn1997] Brown, Peter J., John D. Bovey and Xian Chen (1997). Context-
aware applications: From the laboratory to the marketplace. IEEE Personal
Communications 4(5): pp. 58-64. October 1997.

[BrumittMeyers2000] Brumitt, Barry L., Brian Meyers, Jon Krumm, Amanda Kern
and Steve Shafer (2000). EasyLiving: Technologies for Intelligent Environments. In
the Proceedings of the 2nd International Symposium on Handheld and Ubiquitous
Computing (HUC2K), pp. 12-27, Bristol, UK, Springer-Verlag. September 25-27,
2000.

[CastroMuntz2000] Paul Castro and Richard Muntz (2000). Managing Context for
Smart Spaces. IEEE Personal Communications, 7(5), 44-46.

[ChenKotz2000] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile
Computing Research. Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, November, 2000.

[CoolTown2000] http://www.cooltown.hp.com

[DaviesMitchell1998] Davies, N., Mitchell, K., Cheverest, K., Blair, G. (1998).
Developing a Context Sensitive Tourist Guide, First Workshop on Human Computer
Interaction with Mobile Devices, GIST Technical Report G98-1.
<http://www.dcs.gla.ac.uk/~johnson/papers/mobile/HCIMD1.html>

 [Dey2000] Anind K. Dey. Providing Architectural Support for Building Context-
Aware Applications. PhD dissertation. Georgia Institute of Technology, November
2000.

[DeySalber2001] Dey, A. K., Salber, D., Abowd, G. D. (2001). A conceptual
framework and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction, 16, xxx-xxx. Vol.16 2001

[FranklinFlaschbart1998] Franklin, David and Joshua Flaschbart (1998). All gadget
and no representation makes jack a dull environment. In the Proceedings of the AAAI
1998 Spring Symposium on Intelligent Environments (AAAI Technical Report SS-98-
02), pp. 155-160, Palo Alto, CA, AAAI Press. March 23-25, 1998.

[GellersenBeigl2000] Hans-W. Gellersen, Michael Beigl and Albrecht Schmidt,
"Sensor-based Context-Awareness for Situated Computing", Workshop on Software
Engineering and Pervasive Computing SEWPC00 at ICSE 2000, Limerick, Ireland,
June 2000.

 Page 12

[HealeyPicard1998] Healey, J.; Picard, R.W (1998). Startlecam: A Cybernetic
Wearable Camera. 2nd. International Symposium on Wearable Computers,
Pittsburgh, Pennsylvania, 19-20 October, 1998, pp.42-49.

[HolderBen-Shaul1999a] O. Holder, I. Ben-Shaul and H. Gazit, System Support for
Dynamic Layout of Distributed Applications. Proceedings of the 19th International
Conference on Distributed Computing Systems (ICDCS'99), Austin, TX, USA, May
1999, pp 403-411.

[HolderBen-Shaul1999b] O. Holder, I. Ben-Shaul and H. Gazit, Dynamic Layout of
Distributed Applications in FarGo. Proceedings of the 21st International Conference
on Software Engineering(ICSE'99), Los Angeles, CA, USA, May 1999, pp 163-173.
[FuggettaPicco1998] Alfonso Fuggetta, Gian Pietro Picco, Giovanni Vigna.
Understanding Code Mobility. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING Vol. 24, No. 5;
MAY 1998, pp. 342-361

[HongLanday2001] Hong, J., & Landay, J. A. (2001). An infrastructure approach to
context-aware computing. Human-Computer Interaction, 16, xxx-xxx. Vol.16 2001

[HullNeaves1997] Hull, Richard, Philip Neaves and James Bedford-Roberts (1997).
Towards situated computing. In the Proceedings of the 1st International Symposium
on Wearable Computers (ISWC'97), pp. 146-153, Cambridge, MA, IEEE. October 13-
14, 1997.

[Ipina2000] Building Components for a Distributed Sentient Framework with Python
and CORBA. Diego López de Ipiña. Proceedings of the 8th International Python
Conference, Arlington, VA, USA. 24-27 January, 2000

[KindbergBarton2001] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker,
Debbie Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard
Morris, John Schettino, Bill Serra, Mirjana Spasojevic. People, places, things: web
presence for the real world. Internet Systems and Applications Laboratory Hewlett-
Packard Laboratories.
http://cooltown.hp.com/dev/wpapers/WebPres/WebPresence.asp

[LamminFlynn1994] Lamming, M. and Flynn, M. (1994). Forget-me-not: Intimate
Computing in Support of Human Memory, in proceedings of FRIEND 21:
International Symposium on Next Generation Human Interfaces,Tokyo,1994 , pp.
125-128.

[LeonhardiKubach1999] Leonhardi, A.; Kubach, U.; Rothermel, K.; Fritz, A. (1999).
Virtual information towers - a metaphor for intuitive, location-aware information
access in a mobile. 3rd International Symposium on Wearable Computers, San
Francisco, California, 18-19 October, 1999, pp. 15-20.

[Long1996] Long, S., et al. (1996). Rapid Prototyping of Mobile Context-aware
Applications: The Cyberguide Case Study. 2nd ACM International Conference on
Mobile Computing and Networking (MobiCom'96) 1996 November 10-12, 1996.

 Page 13

[Nelson1998] Giles John Nelson. Context-Aware and Location Systems. PhD
dissertation. University of Cambridge. January 1998.

[NewmanClark1999] Neill J. Newman and Adrian F. Clark (1999). Sulawesi: A
wearable application integration framework. In the Proceedings of the 3rd
International Symposium on Wearable Computers (ISWC '99), pp. 170-171, San
Francisco, CA, IEEE. October 20-21, 1999.

[PascoeRyan1998] Pascoe, J, Ryan, N.S., Morse, D.R. (1998). Human Computer
Giraffe Interaction - HCI in the Field. Workshop on Human Computer Interaction
with Mobile Devices.

[PascoeRyan1999] Pascoe, J., Ryan, N.S. and Morse, D.R. (1999). Issues in
Developing Context-Aware Computing. Proceedings of the International Symposium
on Handheld and Ubiquitous Computing (Karlsruhe, Germany, Sept. 1999), Springer-
Verlag, pp. 208-221.

[Rey2001] G. Rey. Systèmes Interactifs Sensibles au Contexte. Ecole doctorale de
Mathématiques et Informatique, DEA d’Informatique, Systèmes et Communications,
Université Joseph Fourier et Institut National Polytechnique de Grenoble, June, 2001,
84 pages.

[Rhodes1997] Rhodes, B.J. (1997). The wearable remembrance agent: a system for
augmented memory. 1st International Symposium on Wearable Computers,
Cambridge, Massachusetts, October 13-14, 1997, pp.123-128.

[RoddenCheverst1998] Rodden, Tom, Keith Cheverst, Nigel Davies and Alan Dix
(1998). Exploiting context in HCI design for mobile systems. In the Workshop on
Human Computer Interaction with Mobile Devices, Glasgow, Scotland. May 21-23,
1998.

[RyanPascoe1997] Ryan, N., Pascoe, J., Morse, D. (1997). Enhanced Reality
Fieldwork: the Context-Aware Archaeological Assistant. Gaffney, V., van Leusen,
M., Exxon, S. (eds.) Computer Applications in Archaeology.

[RyanPascoe1998] Ryan, Nick, Jason Pascoe and David Morse (1998). Enhanced
reality fieldwork: the context-aware archaeological assistant. Computer Applications
and Quantitative Methods in Archaeology. V. Gaffney, M. van Leusen and S. Exxon,
Editors. Oxford.

[SamulowitzMichahelles2001] Adaptive Interaction for Enabling Pervasive Services,
M. Samulowitz, F. Michahelles, C. Linnhoff-Popien. 2nd ACM International
Workshop on Data Engineering for Wireless and Mobile Access (MobiDE01), Santa
Barbara, California, USA, May 2001.

[Schilit1995] Schilit, W.N. (1995). System Architecture for Context-Aware Mobile
Computing, Ph.D. Thesis, Columbia University.

 Page 14

[SchilitAdams1994] Schilit, Bill N., Norman I. Adams and Roy Want (1994).
Context-aware computing applications. In the Proceedings of the 1st International
Workshop on Mobile Computing Systems and Applications, pp. 85-90,
Santa Cruz, CA, IEEE. December 8-9, 1994.

[SchilitTheimer1994] Schilit, Bill N. and Marvin M. Theimer (1994). Disseminating
active map information to mobile hosts. IEEE Network 8(5): pp. 22-32.
September/October 1994.

[SchmidtAidoo1999] Schmidt, Albrecht, Kofi Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven and Walter Van de Velde (1999). Advanced
interaction in context. In the Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing (HUC '99), pp. 89-101, Karlsruhe, Germany,
Springer-Verlag. September 27-29, 1999.

[WangGarlan2000] Task Driven Computing, Zhenyu Wang and David Garlan,
Workshop on Software Engineering for Wearable and Pervasive Computing, ICSE
2000.

[Want1995] Want, R. et al. (1995). An Overview of the PARCTAB Ubiquitous
Computing Environment. IEEE Personal Communications, vol 2, no 6, Dec 1995, pp.
28-43.

[WantHopper1992] Want, R., Hopper, A., Falcao, V., Gibbons, J. (1992). The Active
Badge Location System. ACM Transactions on Information Systems 10(1) pp. 91-
102.

[WardJones1997] Ward, Andy, Alan Jones and Andy Hopper (1997). A new location
technique for the active office. IEEE Personal Communications 4(5): pp. 42-47.
October 1997.

[Winograd2001] Terry Winograd. Architectures for Context.
Human-Computer Interaction journal, Special Issue of Human-Computer Interaction,
Volume 16, 2001

[YangYang1999] Jie Yang; Weiyi Yang; Denecke, M.; Waibel, A. (1999). Smart
sight: a tourist assistant system. 3rd International Symposium on Wearable
Computers, San Francisco, California, 18-19 October, 1999, pp. 73-78.

 1

HIGH LEVEL REQUIREMENTS AND ARCHITECTURE

Prof. Patrick Nixon
Computer Science Department
The University of Strathclyde

This report introduces a high level architecture for a system to support ad hoc connections within a CORBA/Java
compliant environment. The report outlines the progress made in defining the architecture based on policies and events
which will be used to integrate robustness and fault tolerance features into a an ad-hoc mobile code environment.

1.1. Mobility Architecture

The mobility architecture’s task is to ensure that mobile computations can transfer from node to
node successfully and continue executing their tasks. What objects end up being migrated is
dictated by the decision of the policy service and event service.

The structure of a generic migratory distributed application is displayed in figure 1. It shows how
each component (also referred to as an autonomous object) can exist on a different node and yet
remain in communication with other components of the application. Here the term node refers to a
single processor, typically a single host. The circles represent components, while the dashed lines
represent the various network references, or simply links, between them. The components are
capable of being migrated to another node yet still carry on its computation, and more importantly
its role in the computation. This is the goal for a real world system but prior to building such a
system it is necessary to describe a disciplined abstract structure.

The complete structure of the architecture can be encapsuated in a logical database. It represents a
rational method to store such a configuration because it is well structured, secure and retains data
integrity automatically. The logical database can be implemented as a single, distributed or
federated database, and we use the central database term solely to convey the methodology to be
used in implementing such a system.

Different interfaces to the database allow access to the data. These interfaces are in the form of the
standard services such as those specified by the OMG, RM-ODP, ODMG, and IETF. Due to the
fact that they are stateless they represent logical filters to all data. For consistency we assume the
definitions of the OMG for discussions of services named below.

The relationship service and naming service will assist migrating components to rebind to well
specified or generic services. For example, should a migrating component wish to avail of a
standard printing service on a destination host then the relationship service will provide the
appropriate resource name. If the docking component has special ‘secure’ privileges then the
relationship service may specify a secure output device such as the manager’s printer while
‘normal’ components are referred to a standard office printer. Using this evaluated resource name a
concrete binding to the particular resource is returned from the naming service. The Event Service
[4] allows objects to communicate using decoupled event-based semantics. The Query Service
provides an interface in much the same way as SQL provides an interface to databases.

 2

Naming
service

Relationship
service

Event
service

LDAP

Policy service

Industry-standard interfaces
provide checked access to and
from the underlying relationships

Database holds a machine-readable
description of the application
architecture

Query
service

References to architectural roles refer
to object services to retain currency in
the face of re-configuration

Objects indicate
important events to
the architecture

Physical nodes

Policy service controls
movement and re-binding
of objects according to
events and rules

Business
rules

Fig. 1. A Managed Architecture Mobile Distributed Applications

All the services see the same data in the database. Their purpose is to give the component a view of
just the data needed to provide the bindings between resource names and their object references.
This provides a seperation of data from the interfaces used to access it. Migrating components use
the service interfaces to reconfigure their resource bindings. Each migration is different and can
have different consequences. Use of standards allow the architecture to evolve as more interfaces
become available over time and therefore, such an open system has the potential to do for migratory
applications what OMG’s CORBA did for remote object invocation.

1.2. Proposed migration technique

The research community has two broad notions in regard to mobile computations. Cardelli [9] states
that mobile agents are meant to be completely self-contained. They do not communicate remotely
with other agents, rather they move to some location and communicate locally when they get there.
Agents are generally perceived to have an intelligence aspect which is lacking in simple mobile
object systems. Mobile objects have their course set out from the start. They exhibit no independent
judgement and can be though of as a drone. These methods represent opposite ends of the control
spectrum. One having complete autonomy the other having none. We propose a mid grained
approach where the key goal is control and not constraint.

Fig. 2. Migration Technique

An important part of the architecture resides in the policy management unit. Each component,
which is capable of migrating, has a ‘moveTo()’ method for such a purpose. The component itself
can not call this method. Instead the policy unit invokes it, providing it with a destination and any

Policy Server
A B

D C Z
Z

Z
 if (atNodeB) then

 migrate to NodeD =
illegal

 goto Node C

moveTo()

 3

other necessary parameters. The policy manager can dictate for example, whether it will allow a
particular component access to its node or even whether an object can leave its node. Such
decisions are dynamic and complex, and the design of a comprehensive policy manager is outside
the scope of this paper. Were the component able to invoke moveTo() itself it would exibit the
primary trait of an autonomous agent. Such autonomy can be simulated within the architecture by
the use of a null policy which simply defers to requests of the requesting object. Policies are the key
to adaptibility, as they also allow a range of different design choices to be facilitated in a single
implementation. Policies even enable for design decisions to be revised post implementation
without the necessarily having to change the algorithmic solution.

1.2.1. State Space Access
The Name Service in OrbixWeb [4] provides a standard OMG service. The format it saves its data
in is proprietary. We have implemented a stateless name service which saves its data in an oracle
database. This procedure allows other services to view the same data and alter it accordingly
without causing conflicts which would arise were the name service stateful. Another advantage is
the ease of use from a management point of view. It separates the concerns of users and
administrators.

1.2.2. Architectural Pointers
Central to a stable migration is the abstract concept we refer to as an architectural pointer: a
reference to an object specified relative to the architecture database by way of one or more of the
services made available by the architecture. The pointer essentially encapsulates a query against the
database together with the object resulting from the last time the query executed.

The power of architectural pointers comes from the use of the database. By combining
architectural, configuration and placement data within a single logical structure, and allowing
different views through the services, it is possible to identify roles in a very flexible manner. It also
allows objects to reference roles directly, rather than purely retaining links to the objects which
happened to fulfill those roles at any point in time. Finally, by acting as event consumers, they
allow the policy component to re-configure the application and propagate these changes (in the
form of pointer invalidations) directly to all affected objects.

Fig. 3. Architectural Pointers

As an example of the utility of architectural pointers consider an object using both shared user
database (D) and a printer (P1), with the constraint that the object always uses the same database

Object

P1

D

R3

Before

Node A Node B

migrate
P2

X

Y

Object

P1

D

R3

Node A Node B
P2

X

Y

After

 4

irrespective of location while it’s printer is defined as the printer on the local node. Architecturally
this may be specified by identifying the user database explicitly by name and the printer in relation
to the local node (figure 3 - before). If the object is migrated (figure 3 - after) then the database
reference will remain valid but the printer reference will be invalidated, and when re-evaluated will
re-bind to the printer on the object’s new node (P2). The invalidation and re-binding is performed
by the migration run-time system.

1.3. Event Service

On examination of a typical room in an office, depending on the level of granularity you choose,
there can be many thousands of different things going on all around. Every time someone or
something moves can be classified as a ‘happening’ or an ‘event’. Typically in an office
environment we are only interested in the events that interact on the human level. These are
occurrences which we can see and observe. People moving from one room to another, doors
opening and closing, a printer finished printing, a kettle boiled, these all fall into events which
happen or which we cause to happen.

Even in a relatively small building and even at this level of granularity there are still immense
amounts of information relating to the full set of events. Each object which raises an event wants all
interested parties to know that this event has occurred. The simplest manner to deal with this is to
broadcast to all who are listening. However, when examining all the objects which make up the
average building, this will inevitably be to much information. What results is an ‘event storm’
where all objects are trying to tell every other object about it’s condition. This leads to total
congestion on the communication medium with the effect of nothing, or very little, getting done.

What is required is a system which will manage these events and control the flow of event
notification only to those objects who require it. This is achieved by firstly categorising objects into
sources and sinks. An object is an event source when it generates events. Therefore, a door opening
is a type of event so the door object is an event source. An event sink is an object which is
interested in particular events. An example here might be the security object, which is interested in
a the door object being opened. It will want to check whether the room should be accessible and
whether the person entering it has permission to do so. For the event sink to be informed of such
events it needs to register with the event source requesting that it send it an such occurrences.

1.3.1. Event Service Advertising
As mentioned previously an object which produces events are referred to as event sources. Prior to the issuing of events
objects have first to advertise their intention to publish events .

Fig. 4. Event Service Advertising

Event Naming
Service

Event Source Permanent Storage

(2)

Event Bus

(
1

 5

The first step in advertising an will be a call to the Advertise(name, other info) method to indicate to
the event bus it readiness to produce events. A naming system must be adopted whereby the events
can be uniquely identify throughout the system. To this end a proprietary naming scheme will be
used for the naming of the events.

An example URI that could uniquely identify an event might look like the following,
ie.tcd.Oreilly.floor2.Simon.enterEvent. This would uniquely identify the event, but also give the
location to where the information on the event is found and what protocol is to be used.

The event bus is the support mechanism for production and consumption of events. In this model an
event bus will be located on each device. The Advertise method passes the event bus the name of
the event, which is the identifier discussed earlier. It also passes other information such as owner
event source.

The next step is for the local event bus to forward this information, along with location of the event
source, onto the Event Naming. This is the central repository for named events. It is a look up
mechanism which event sinks use to discover an event source. After the Naming Service receives
the information, it inserts it into its database thereby adding the event source to the list of other
sources. Once this is completed the event source is considered as been advertised.

1.3.2. Event Subscription
As with most event services clients are required to, in some way, subscribe to events that they are
interested in. This narrows the scope of the events on the overall system. It also prevents event
storming by only sending the notification of the event to the parties which have shown an interest in
that event. Clients in this event service are required to subscribe to an event using the full name of
the event

Fig. 5. Subscribing to Events

Figure 5 shows the series of steps required for a client to subscribe to an event. There are four
distinct stages to subscribing; the client making the request, finding the location of the event bus
which support the event source, subscribing to the event bus and the installation of the filter. The
filter in this case is acquired from the policy service which is discussed in Section 3.3. Suffice to
say that the filter will ensure that event sinks will only receive notice of the event if certain
eventualities prove true.

(5)

Policy Service

Event Bus

Event

(4)
(6)

(8) (7)

Filter

EventNaming

Event Bus

Client
(1)

(3) (2)

(9)

 6

An event sink can unsubscribe from event sources. It does so in a similar, but reverse order, fashion
as event subscription.

1.3.3. Event Notification

Figure 6 shows the manner in which the event bus informs registered objects. The event source
notifies it local event bus of a new event and passes the parameters associated with this instance of
the event. The job of the event bus is to then to notify the interested parties of the event.

Fig. 6. Event Notification

1.4. Policy Service

All formal organisations have policies, which are defined as ‘the plans of an organisation to meet its
goals’. Policies, on a more abstract level, represent a capability or a capacity to do something.

Take the example of a typical building, be it a shop, an office or a home environment, policies are
in force. Offices and shops typically have a security guard with specific instructions from a building
manager. They will only allow certain authorised individuals into sensitive areas of the premises or
they may refuse others access altogether. In this particular case the person attempting to enter is
referred to as the policy subject while the security guard is the policy target. The target will have
actions available which are to be accessed by the subject. In this example the only action available
might be enter. If there is a policy constraint associated with the target object, for example “are
underage” then the enter action may not be accessible to a person who is declared to be underage.

The primary purpose of the policy service is to model these rules in such a way that they are
specific, unambiguous and fulfil their purpose.

To model a building for policy needs, a tree of zones is mapped out. Figure 7 shows the O’Reilly
Institute in Trinity mapped out into constituent zones. The fixed elements which a building contains
(refer to section 3) will be assigned to specific zones while the mobile elements have the ability to
move between zones. Zones and objects have policies associated with them. For all elements in the
environment a policy object will be associated with it.

Event Bus

Clie

(3

 Event Bus

Event Source

(1)
(2)

Filters Event Bus

Clie

Event Bus

Client

 7

ORI

Ground Floor 1st Floor

Left Side Right Side

room 1

Left Side Right Side

room 3room 2 room 8 room 9

Mail

Web

WhiteBoard

WhiteBoard

WhiteBoard

Light

Printer(oriff)

Fig. 7. Zone tree

As mentioned in the example above policies have certain elements associated with them. A full
definition is provided by Sloman. According to Sloman [2] a policy can be defined by five criteria.

?? Modality: A policy may be authorisation or obligation. In both cases the modality can be positive of negative.

Positive authorisation (A+) is a flag which indicates that if a certain action occurs the perpetrator will be permitted to
carry on. For example a system administration person attempting to enter a server room would be allowed. Negative
authorisation (forbidding) provides the opposite effect so that a policy could be installed to withhold access for all
non system administration personnel unless they are accompanied by an authorised person.

Positive obligation (O+) ensures that if a particular action takes place then this policy dictates a
course of action which must be followed. An example could be that if the non sys-admin person
was in the server room then that presence requires a log entry in a security database. Negative
obligation provides a deterring mechanism

?? Policy Subject: This attributes defines the user objects to whom the policy applies. The policy subject can be a

specific user, a group of users, or a list of users and groups.
 PS: Simon
 PS: All
 PS: Under, Post, Paddy
The policy subject is classified as the producer of an event. The full relationship between events and
policies is discussed at the end of the section.

?? Policy Target Object: it defines the objects at which the policy is directed. It can also describe a list of objects or a

zone. The target object is the consumer of events.
 Printer_oriff
 Mail_Server
 Door_G51

?? Policy Action: This attributes defines the method to which the policy applies. This represents a specific method of

the policy object. These methods are available to the policy subject providing that no constraints are in place. On the
pretence that no constraints are in place, the policy subject can invoke those methods on the target object.

 Print()
 Setup()
 Send_Mail(Mail)

 8

?? Policy Constraints: Constraints serve as our way of setting rules. They give us control over the policy subject’s
actions. The basic structure is a set of Boolean methods that must all return. Failure to do this will prevent access to
the target’s functionality. The conditions are very specific to the object. No constraints means free access. This
constraint can be another policy. In that case the policy in question have to be respected to fulfil the present one. The
following scenario gives an insight as to how constraints work. Simon’s office door has a door opening mechanism.
The door is the target object. Associated with this is it’s action openDoor. Also associated is the constraint
Access(UserID). As Simon (policy subject) approaches the door an event is generated. The openDoor action is not
immediately available because a constraint is in place. The UserID is passed to the policy, it returns true as Simon
has full access so now openDoor is invoked and the door sweeps open. All this information is encapsulated in a
policy object.

 Cond (Job_Name) Allow to print only a certain job
 Cond (Time) Allow only at certain time

?? Owner: The Owner attribute specifies the owner of the policy. It is used for allowing changes to the policy and for

accounting or requests such as all the retrieval of all the policies of a specific user. By default the owner of a policy is
the application that owns the object, but the administrator can always modify policies.

 Owner: Admin
 Owner: Printing_Service
 Owner: Paddy

Policies, events and system management are all tightly related. The event service generates the
events, the policy service defines the capabilities of all entities/objects and the management service
carries out the required tasks.

Next stages

The netx stage sof the work are to develop an implemntation of migrant and disconnected objects
based on the above and then to integrate the existing CORBA trader based rebinding services to
provide update and sychonisation. This will then be used as the foundation to empiraclly
investigate this approach in ad-hoc networking scenarios.

References

[1] Trinity College Library, New Library Building, Architectural Brief
available from http://www.tcd.ie/Library/Local/Newlib/Brief/

[2] J.D. Moffett, M.S. Sloman, “The Representation of Policies as System Objects”,

 SIGOIS Bulletin, Vol. 12 No.2, pp 171-184.

[3] Jini Technology Executive Overview, Sun Microsystems, Inc.
 available from http://www.sun.com/jini/overview/

[4] Michael H. Coen, “The future of human-computer interaction, or how I learned to stop worrying and love my intelligent room”,

IEEE Intelligent Systems, March/April 1999.

[5] Michael C. Mozer, “An intelligent environment must be adaptive”, IEEE Intelligent Systems, March/April 1999.
[6] James L.Flanagan, “Autodirective sound capture: towards smarter conference rooms”, IEEE Intelligent Systems, March/April

1999.

[7] Frank Olken, Hans-Arno Jacobsen, Chuch McPartland, Mary Ann Piette, Mary F. Anderson, “Object Lessons Learned from a

Distributed System for Remote Building Monitoring and Operation”, ACM SIGPLAN, Vol 33, No. 10, October 1998.

[8] Sean M. Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard W. Trickey, and Philip Winterbottom, The Inferno

Operating System, Lucent Technologies.

[9] Luca Cardelli, “Mobile Computation”, Microsoft Research. available from
http://www.luca.demon.co.uk

